Tumor-suppressive miR-26a and miR-26b inhibit cell aggressiveness by regulating FUT4 in colorectal cancer
نویسندگان
چکیده
Metastasis is a multistep molecular network process, which is the major cause of death in patients with colorectal cancer (CRC). MicroRNAs (miRNAs) play pivotal roles in tumorigenesis as either tumor suppressors or oncogenes. Increased expression of fucosyltransferase4 (FUT4) has been reported to be associated with the invasive and metastatic properties of CRC. Here to identify potential key miRNAs and their target genes for colorectal cancer (CRC), we compared miRNA expression profiles between metastatic CRC cell SW620 and primary CRC cell SW480. Microarray analysis revealed that there were 85 differentially expressed miRNAs in SW620 cells with highly metastatic potential compared to SW480 cells with lowly metastatic potential. The expression of miR-26a and miR-26b were lower in SW620 cells than in SW480 cells, as well as downregulated in tumor tissues than in adjacent normal tissues of CRC patients. By applying bioinformatic approaches for the prediction of miRNA targeting 3'-UTR of FUT4, we identified FUT4 as one of the miR-26a/26b-targeted genes, while the expression of the target gene exhibited patterns opposite to that of miR-26a/26b in CRC cell lines, tumor tissues and corresponding adjacent tissues. Forced miR-26a/26b expression affected migratory behavior of CRC cells and FUT4 expression, while altered expression of FUT4 in CRC cell lines modulated progression upon transfection with miR-26a/26b mimic or inhibiter. FUT4 also regulated directly aggressiveness of SW620 and SW480 cells. Moreover, statistical analyses revealed that low miR-26a/26b levels and high expression of FUT4 were positively correlated with poor overall survival. The identified CRC-restricted miR-26a and miR-26b might be implicated in cancer progression via their target gene FUT4, suggesting their potential usage in CRC treatment.
منابع مشابه
MicroRNA-26a/b directly regulate La-related protein 1 and inhibit cancer cell invasion in prostate cancer.
Our past studies of microRNA (miRNA) expression signatures of cancers including prostate cancer (PCa) revealed that microRNA-26a and microRNA-26b (miR-26a and miR-26b) were significantly downregulated in cancer tissues. In the present study, we found that restoration of miR-26a or miR-26b significantly inhibited PCa cell invasion. Gene expression data and in silico analysis showed that the gene...
متن کاملMiR-6165 Dysregulation in Breast Cancer and Its Effect on Cell Proliferation and Migration
Background: ncRNAs have been identified as oncogenic drivers and tumor suppressors in any type of cancer. Although many classes of ncRNAs have been reported, most studies have been performed on microRNAs (miRNAs). miRNAs can regulate several target genes and affect important processes such as homeostasis, angiogenesis, cell proliferation, differentiation, and apoptosis. Located in the p75NTR ge...
متن کاملOmega-3 Polyunsaturated Fatty Acids Upregulate 15-PGDH Expression in Cholangiocarcinoma Cells by Inhibiting miR-26a/b Expression.
Prostaglandin E2 (PGE2) is a proinflammatory lipid mediator that promotes cancer growth. The 15-hydroxyprostaglandin dehydrogenase (15-PGDH) catalyzes oxidation of the 15(S)-hydroxyl group of PGE2, leading to its inactivation. Therefore, 15-PGDH induction may offer a strategy to treat cancers that are driven by PGE2, such as human cholangiocarcinoma. Here, we report that omega-3 polyunsaturated...
متن کاملMicroRNA-26b inhibits osteosarcoma cell migration and invasion by down-regulating PFKFB3 expression.
MicroRNAs regulate target gene expression and are involved in cell proliferation, apoptosis, differentiation, tumor invasion, and cancer stem cell regulation, among other processes. MicroRNA-26b (miR-26b) is closely related to tumor occurrence and development. In this study, we analyzed miR-26b expression in osteosarcoma tissue, its effect on Saos-2 osteosarcoma cell proliferation and invasion,...
متن کاملMyc Enforces Overexpression of EZH2 in Early Prostatic Neoplasia via Transcriptional and Post-transcriptional Mechanisms
EZH2 is part of the PRC2 polycomb repressive complex that is overexpressed in multiple cancer types and has been implicated in prostate cancer initiation and progression. Here, we identify EZH2 as a target of the MYC oncogene in prostate cancer and show that MYC coordinately regulates EZH2 through transcriptional and post-transcriptional means. Although prior studies in prostate cancer have re...
متن کامل